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ABSTRACT

This report suamerizes almost seven years of experimental and analytical
studies of the heat transfer behavior of the turtulent boundary layer. The
principai objective has been the acquisition of a reliable date base and its
mgdeling by means of a finite-difference computer program. £&xperimental re-
suits are provided to the computer in terms of values and variations of
mixing length parameters and turbulent Prandtl numbers. The data bese covers
a wide range of boundary conditions and free stream conditiens: ’

NS

-=~= Free stream velocities:~-uniform velocity; accelerations at ' ;
constant K up to “relaminarization”; decelerations at
constant B, bu: not including separation.

--- Transpiration:--blicwing and suction at constant biowing
fraction F; at constant blowing parameter B; and with
stepwise and arbitrary variations.

--- Wall temperature:--uniform, stepwise and arbitrary distribu-
tions,

) C ey tare am
; ik i it

.1
i ol NEs

It is shown that a single pair of functions (ome for At and one for turbulent
Prandtl number) suffice to recover all of the data. Both_the surface data (skin
friction and Stanton number) and the profiles of mean velocity and temperature
are predictable with acceptable accuracy{
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English
Lattar
Symhols

-]

S

Ceefficient of skin friction,

 Coefficient of skin friction with no transpiration,

Nomenclature

Dimensionless Jength scale for the damping function, Eq. {53).
Biowing parameter of the heat transfer oroblem, £q. (5).
8lcwing parameter of the mementum problem, Eq. (3).

Specific heat at constant pressuve, Btu/lbm°F.

other tactors remaining constant, £q. (47).
Damping function for mixing length.

Blowing fraction, pova/QmUm.

Gravitational constant, ft/sec2 Ibfllbm.
Clauser shepe factor, Eq. (11).

Mass velocity of the free stream, Xbm/ftzsec.
Shape factor, 61/52.

Mixing length constant.

Acceleration parameter, Eg. (15).

Mixing length.

Length scale of turbulence.

Exponent describing free stream velocity variation in decelerating
flows, Eq. (1).

Transpiration rate, 1bm/sec ftz.
Pressure.
Dimensionless pressure, —35- %g
ol
T

Prandtl number.

i
Turbulent Prandtl number, Eq. (59). $;

Heat transfer rate, Btu/sec ft‘.

-
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English
Symbols

Enthalpy thickness Reynolds number, Gobalv.
Momentum thickness Reynolds number, Qnaz!v.
Turbulence Reynolds number, Eq. {50).
Stanton number.

Stanton number with no transpiration, other factors remaining
constant.

Temperature.

Surface temperature, °F.
Dimensionless temperature, Eq. (28).

Dimensionless temperature, Eq. {28).

Dimensionless temperature defect, Eq. (18).

Temperature of free stream, °F,

Velocity, ft/sec.

Fluctuating component of u, ft/sec.

Dimensionless velocity, u/U_, or time-averaged velocity.
Dimensionless velocity, u/UT.

Velocity of the free stream, ft/sec.

Shear velocity, chro7p.
Velocity of the transpired fluid, at the wall.

Velocity of the transpired fiuid, at the wall, dimensionless, vo/UT .

Fluctuating component of .

Dimensionless velocity, v/U_, or time-averaged velocity,
Distance in the stream-wise direction, ft.

Distance normal to the wall, ft.

Distance normal to the Flow, parallel to the surface, ft.

Dimensionless distance from the wall, yUT/v.

1d
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Greek
Letter

Symbols

a Thermal diffusivity, k/pc.

B Pressure gradient parameter, Eg. (6).

6( ) Uncectainty in { ), £q. (29).
8gq  Boundary layer thickness to the location of wu/U_ = 0.99.

poyrrerengatper pevrpor-e AN

61 Displacenent thickness.

6o Momentum thickness.

8- Clauser thickness, Eq. (10).

€ Turbulent diffusivity for heat, Eq. (58).

€ Turbulent diffusivity for momentum, Eq. {44).
Az Enthalpy thickness.

Ay Defect enthalpy thickness, Eq. (19).

A Mixing length proportionality factor, Eq. (55).
po. Lensity evaluated at the surface, 1b"/ft3.
0, Density evaluated in the free stream, 1bm/ft3.

T Shear stress, Ibf/ftz.

T, Shear stress at the surface, Ibf/ftz.
Ty Turbulent shear stress.
v Kinematic viscosity, ftz/sec.




INTRODUCTION

The boundary layer with transpiration thru the solid surface is a
variant of the general boundary layer problem that has been of considerable
"interest in technical applications for at-least two decades. In the early
1950's transpiration was being extensively investigated as a means of cool-
ing aerodynamic surfaces under high velocity flight conditions. But tran-
spiration from a solid surface over which a fluid is flowing, 2nd on which
a boundary layer is developing, is of interest in a Yarge number of quite
different types cf applications, of which transpiration cooling is only
one. ' : ‘ _

In the typical transpiration cooling application, the solid surface
is constructed of some kind of porous solid material. Cooling fluid, _
which may be cherically the same as the free-stream, is then forced through
the surface with the objective of protecting che surface from a het free-
stream. This. is a boundary layer problem for which the normal component
of velocity at the solid-fluid interface is non-zero, but otherwise the |
sar~ momentum and energy boundary layer differential equation must be
solved zs for the rontranspired boundary Tayer. A variation on this prob-

lem occurs when the cooling fluid is a chemically different specie than
~ the free-stream fluid. For example, helium might be injected as a
coolant to protect a surface from a high temperature air free-stream. In
this case the mass-diffusion equation of the boundary layer must be solved
in addition to the momentum and energy equations. There are obviously
similarities between these two types of problems, but also fundimental dif-
ferences. Pnth are "mass transfer" problems in the sense that mass is trans-
ferred across the fluid-solid interface, but the latter is also a mass-dif-
fusion problem, while the former is not.

Ancther transpiration problem arises when there is evaporation or sub-
Jimation from an interface into a boundary layer, or condensation onto the
interface. A further variation on the problem arises when there is chemical
reaction either within the boundary layer or at the surf: e,

In any of the cases cited, the direction of the flow normal to the
surface at the interface could be into the surface, or it could be out
of the surface. The terms "blowing" and "suction" are frequently used to




denote the direction of flow ¢¢ the interface, while the word “transpiration”
gererally is taken to embrace both cases. Suction is sometimes used as a
-scheme for aerodynamic boundary layer control because it is possible to in-
hibit or prevent boundary layer separation by suction.

These various types of applications suggest why chemical, mechanical
and aeronautical engineers have all made significant contributions to the
theory, and the terminology to. a certain extent reflects these various
origins of interest. ’

In the class of problem considered here it is assumed that the surface
is aerodynamically smooth, and that the holes or pores in the surface through

, which the transpiration fluid flows are sufficiently small relative to the
boundary'layer’thickness so-that the velogity normal to the surface may be
treated as uniform over evéry small region. (If the holes are large,
with large spacing, the boundary layer structure is altered. Although the
resulting boundary layer may have some of the characteristics of the tran-
spired boundary layer, that problem will not be consideked here.)

The transpired boundary (ayer may be laminar or turbulent. The laminar
boundary layer with transpiration has been extensively studied, resulting in
a large number of exact mathematical solutions for certain fundamertal cases
where similarity in velocity profiles, and in temperature profiles, is
obtained, and various approximate methods have been developed to handle .cases
when similarity does not exist, More recently finite difference solutions
have become so easy to cbtain with digital computers, for any kind of
boundary conditions, that f.rther investigation of the iaminar boundary layer
does not appear very fruitful, except for some very special cases. The
turbulent boundary layer, on the other hand, is not nearly so well under-
stood, even without transpiration. Up until about ten years ago there were
remarkably few experimental data available for the transpired turbulent
boundary layer. Mickley et al. (1954, 1957) at MIT had, during the 1950's,
studied the momentum and cuncentration boundavy layers; very little had been
done with the thermal boundary layer. Certainly there were insufficient
data of adequate accuracy .to provide the basis for anything approaching a
complete turbulent boundary layer theory. In the 1960's experimental
activity went forward with increasin: intensity in various parts of the
world, and in 1965 the authors joined in this effort.
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At the present time the behavior of the turbulent transpired momentum
boundary layer for an essentially incompressible fluid is fairly well under-
stood for a sufficient range of boundary conditions to make it worthwhile to
attempt to summarize the available data, and the state-of-the-ar: in boundary
Tayer amalytic prediction.~ A similar statement can be made about the thermal '
boundary layer, but only for fluids with Prandtl number near unit: . This is )

not to say that predictions adequate for most engineering design cannot be - SRR

made for other fluids, but experimental confirmatory data are . <ing. Data
on the turbulent transpired concentration boundary layer are :unsideiably
more scarce. The concentration boundary layer problem ir -omplicated by the

fact that strong transpiration is. usually accompanied by iarge fluid property

- gradients caused by large concentration gradients, and this adds more variables
to the experiments. Of course if concentrations, and thus concentration
gradients, are small, and if Lewis number is near unity, the behavior of
the concentration boundary layer should be identical to that of the thermal
boundary iayer. ’ ' '

In order to restrict this paper to a range of variables and houndary
conditions fur which there is now a considerable body of data, the scope of
the paper will be restricted to the following:

(a) Momentum and thermal boundary layers only

~ (b) Constant fluid properties, so that the momentum and energy

equations are effectively de-coupled.

(z) Low velocity flows, with a similar result as in (b).

(d) Two-dimensional boundary layers.

(e) Steady flow.

€f) Aerodynamically smooth surface

(g) Injection or suction velocity uniform over each small area of
surface (though possibly varying in the streanwise direction
on a.larger scale)

?Nithin this scope, the objective of the paper will be to summarize the
present status of our experimental knowledge of this family of boundary layer
flows, and to demonstrate how these flows can be predicted by a reasonably
simple mathematical model and a finite-difference calculation procedure.
Becavse tne authors themselves have contributed much of the available data
to the literzture, the main line of experimental data to be presented will

3
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" be author's own. However, wherever . practicable, comparisons will be made
with the data of others, because there are indegd some discrepancies and,
consequently, some differences bf‘opinion, The mathermatical model to be
proposed is only one of several eddy-viscesity, eddy-cenductivity mdels
discussed in the literature, all of which are actually very similar.
However, it is one that has been used with considerabie success by the
authors, as will be demonstrated. It is rot a purpose 5f this paper to
critically evaluate varicus prediction schemes. It is Suggested that others
might find the experimental data summarized here to be useful for such an
evaluation.

The general problem considered is illustrated by reference to Fig. 1. :
A fluid flows at a steady rate aiong a flat surface which is porous, and ,{7
througn which fluid with the same composition can be forced into the boundary
layer or withdrawn from the boundary layer {blowing or suction). Reynolds
number is sufficiently nigh so that the boundary layer is turbulent. It is
presumed that the surface is aerodynamically smooth and that tne velocity
normal to the surface, whether positive or negative, is uniform over an
area large relative to the sublayer thickness. It is presumed that the
solid surface is a heat conductor, and that heat can be conducted to or from
the surface. It is further presumed that the sur¥ace construction is such
that the transpired fluid is in thermal equilibrium with the solid surface
at the interface. In general, our long range objective would be to consider
the case where the mass transfer rate m" {i.e., the transpiration rate)
is any arbitrary function of distance x along the surface, where the con-
vection heat transfer g" is any arbitrary function of distance x alomg
the surface (or the surface temperature to is any arbitrary function of
X ). We would like, ultimately, to consider the case where the free-stream
velocity U  may vary in any arbitrary manner with x , but we will restrict
free-stream temperature t_ to a constant. The boundary layer is two-
dimensional, with the co-ordinate y used to measure the distance normal
to the surface (i.e., all properties are uniform with respect to the Z-direction).
Under these conditions we are interested in the development and properties of
a momentum boundary layer, characterized by a thickness $, , and a thermal
boundary layer characterized by a thickness by
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§ It is apparent that solution of the genera: preblem described above -

j' _ is going to require a theory incorperating some broadly applicabie hypotheses -

N  about the turbulent transport mechenisms. The number of independent variables,

- and the infinite possibilitiey for varying boundary conditions, make it -
impractical to consider the totally experimental approach wherein experimental
data ere genaralized by dimensicnal analysis and then applied directly to
particular problems. This raises the question as to what kinds of experiment;_‘
should be carried out to provide the experinentai basis for a general theory.
What are the more fundamental cases that should be tested t1 provide fire
bench-marks and from which the various constants and funciions necessary to 3

~ & more general theory can be derived? UWhat are some critical experiments - ;

that should be carvied out tc provide a severe test of s general theory? L f
Experience with the laminar boundary layer, which can of ccurse be |

completely handied analytically, has pointed the way to certain fundamental 1

cases that also arise with turbulent boundary layers. Certain parameters %

can be maintained constant, which makes it easier ts derive the critical com- i

stanls and %o determine their functione} dspendence. In laminar boundary 1

layer theory the concept of velocity profile similarity leads to a very com- ;

siderable mathematical simpiification, and to a whole family of simple solu-

tions for some particular cases cf transpiration and free-stream velocity

variation. Clauser (1954) demonstrated that for a turbulent boundary laye-

without transpiration a family of "equilibrium" boundary layers exist which

have partial velocity profile similarity, and Bradshaw {1967) demons trated

that essentially the same free-stream velocity variation that yields the

laminar boundary layer "similarity" soiutions also leads to "equilibrium" )

boundary layers in the turbulent cese. Anderson (1972} has shown that -

essentially the same situation exists for transpired turbulent boundary

layers. Thus the family of "eguilibrium" transpired turbuient boundary

layers appears to provide a fundameatal set, and will be used in this paper

for the main presentation of experimental data. The corstants and functions

for use in a more general theory will be derived from these "equilibrium"
experiments. Then, to provide some severe tests of general theories, a
smali amount of data for "non-equilibrium” cases will be presented.

In the section immediately following, the concept of the "equilibrium"
boundary tayer wiil be discussed more precisely. The available experimental
data for "equilibrium" transpired bourdary layers will then be presented in

iy s Bl




three grouns, starting with the case of a constant free-stream velocity,

then the case of an accelerating free-stream velocity (favorable pressure
gradient}, and finally the case of decelerating free-stream velocity {adverse
pressure gradient).

After presentation of some data cn “non-equilibrium” flows, mathematical
models for both the momentum and energy equations will be discussed, and the
appropriate constants and functions derived from the “equilibrium" experiuenis
will be presented. Finally some examples of predictions based o this
particular theory will he presented.

As a final word of intrcduction, it should be pointed out that aithsugh
the primary subject of this paper is the turbulent boundary layer with traas-
piration, the case of the impermeable wall, i.e., non-transpiration, is a
valid member of the family of flows considered. The data presented for this
case, which of course has been extensively studied by many workers over the
years, was obtained in the authors’ laboratory. However, in ali essentials
it is virtually identical to that reported by most other workers, and thus
¢an probably be considered as definitive.
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EQUILIBRIUM BOUNDARY LAYERS {

The motivation which has guided the choice of parameters for the so-
called equilibrium turbulent boundary layers has its roots in the similarity
variables of laminar boundary layer theory. In laminar boundary layers,
fixing the value of an appropriate ratio of boundary conditions allows the
reduction of the partial differential equation to an ordinary one for some
flow conditions, and permits a relatively simpia, mathematical solution.

The resulting velocity and temperature profiles are exactly self-similar,

and there is no uncertainty as to the efficacy of the parameters chosen:

the resulis speak for themselves. No such drastic benefil is realized in
turbuient studies. Combinations of boundary conditions can be proposed as
being likely to lead to self-similar behavior of the boundary layer, but

the profiles must be found experimentally and they are not usually exactly
self-similar, only approximately so. Turbulent boundary layers driven by
these carefully chosen combinations of boundary conditions are known as
“eguilibrium” or "asymptotic" boundary layers: not truly similar, but

closely =o.

The best-known class of flows leading to 1am§nar similarity soiutions :
is the Falkner-Skan family, which results when the free-stream velocity, 3
U, . varies as X" (m positive or negative) and v
. panner, i.e.,

o varies in a related

iy
1

U o« A (1)

0

and i
v, = U (ce/2) (2) ;a

It is particularly important to note that similarity is not obtained in
general when 'vo is a constant, independent of x . The special case of
Vo © 0.0 . and " U_ a constant does yield similarity in velocity profiles,
but, in general, a constant value of v, is an "arbitrary" variation of
blowing as far as similarity is concerned. Note further that similarity
is achieved only if vO/(Uwcf/Z) is a constant with respect to v .

This dimensionless group is usually cazlled the "blowing parameters", and
will be termed B . Thus,




b

B = pcvo = ‘i‘“/Gm (3) E
m Pl (Cs/2) Csle

The physical significance of holding qn constant can be appreciated
if it is observed that Bm can be rearranged to display:

GRS

i, | (4)

B A
m=

In this form it can be seen that Bm is the ratio of the transpired
momentum deficit to the surface shear force. When these are kept in a
fixed ratic along a surface, then the laminar boundary layer develops in
such a way as to produce similar velocity profiles. It seems likely that
this ratio wouid alsc be important in turbulent boundary layers.

The energy equation can also be cast in such form as to reveal its
similarity variables. Similar temperature profiles result when, in a laminar
boundary layer having hydrodynamic similarity, the wall and free-stream tem-
peratures are constant and the "heat transfer blowing parameter" B fis
held fixed. This parameter reflects the ratio of the transpired energy
deficit to the surface heat transfer and is defined by:

i e i el A - S st ret ek

SN

PoY, w6,  dtclt-t,)

By 4 o5t = ST C ! (5)

The blowing parameter Bm and the heat transfer blowing parameter
B,, both arise in the reduction of the partial differential equations of
the laminar boundary layer to the ordinary differential equation of the ,
similarity situation. Both, however, are also visible in the integral ‘ T
equations of the boundary layer: a form which applies also to turbulent
boundary layers.

The condition of Eq. (1) can be shown to result in a pressure gradient

parameter, B , which remains constant when m . is constant. The parameter
B 1s defined as follows:



$
8 4 _l(QEA - (6)

- _ = 1, dx/

8 may be interpreted as the ratio of the axial pressure force acting on

3 ) the boundary layer to the shear force at the wail. Thus Bm and B should
) . have similar influences upon the development of the momentum boundary layer,
E T and indeed if one examines the following form of the momentum integral equa-
E : tion of the bourdary layer, this is seen to be the case:

% 2 .

: d{ucs,) 5.1

‘ _ 2’ _ [Zco -

E ' dx B ( Poo ) (1 + B, +8) (7)

Equation (7) expresses the rate of growth of the momentum deficit of the
boundary layer. If Bm and B are held constant along a surface, it is
not surprising that the boundary layer maintains a similarity of structure
as it develops.

The energy integral equation can be manipulated in such a way as to
show the importance of Bh :

RS Gl b iU et P athd MM LR S e ot 54t

L0

dx = = (] + Bh) (8)

dlea b (t,-t )] &
pOO

L5 aach ~oi b A ARSI A

Equation (8) expresses the rate of growth of the axially flowing energy

flux in the thermal boundary layer, and Bh is seen to have the same in-
fluence on the thermal boundary layer as B, has on the momentum boundary
layer. However, note that the pressure gradient parameter B has no direct
effect on the thermal boundary layer.

Let us now turn to the turbulent boundary layer. It would be convenient
to be able to define some kind of similarity that would lead to a classifi-
able group of flows, The probiem is not quite so straightforward as for
laminar boundary layers, because with turbulent boundary layers there are
two distinct regions to consider: the inner and the outer regions behave
differently. It is possible to have inner region similarity independent of
the ocuter part of the boundary layer, though this latter may comprise most
of the boundary layer thickness. The existence of a local "law-of~the-wall"
y : which seems to hold under many conditions regardless of upstream history is
witness to this fact. Put another way, we have been discussing some condi-
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tions of ratios of forces acting on the boundary layer that lead to similar
structure in laminar boundary layers. With the turbulent boundary layer it
is possible for the inner region, near the wall, to be in equilibrium while
the outer region continues to develop. This inner region equilibrium appears
to be associated with an equality "etween the rate of production of turbulent
energy and the rate of dissipation of turbulent energy.

Clauser (1954) proposed that boundary layers having outer region similar-
Jty be called equilibrium boundary layers, and that an egquilibrium boundary
layer be one for which the outer region velocity profile, plotted in velocity-
defect co-ordinates was universal. This condition can be expressed by:

u-u, (y_
e = f ) only (9)
UT 53.
" (u-U,) .
where 8y = 0 dy | (30)
0 T

Clauser also proposed a shape factor, G , that would be a constant,
independent of x , under these conditions:

[ee]

: u-u_\?
G = 5 -/ (1)
T ]

0

Experimentally, it has beer found that if B 1is held constant,
G remains constant. Similarly, it has been found that holding Bm con-
- stant also yields constant G profiles. More recently it has been shown
{Andersen, 1972) that if (Bm + 8) 1is maintained constant, G will be
constant. Thus it appears that the same relationship among the forces
acting on the boundary layer that yields similarity solutions for laminar
boundary layers yields eguilibrium boundary layers, in the Clauser sense,
for turbulent boundary Tayers. '

It is not surprising that the experimental condition leading to the
constant B (and thus constant G ) boundary layers is, again,

10
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U = x (12)

If there is transpiration in addition, Bm must be constant in order to
yield constant G , and this requires that

vy Um(cf/Z) (13)

which may readily be show: to reduce, to a good approximation, to

v.oo& X (14) -

- . - pa2
where mp ~n - 0.2 if c./2 = Re,

Figure 2 shows an example of a series of velocity-defect profiles
for a blown adverse pressure gradient equilibrium boundary layer for
which Bm »G,B8,m, and me  are all constant. Figure 3 shows the
additive character of Bm and B8 for 18 equilibrium boundary conditions.
A rather special case of equilibrium turbulent boundary layers occurs
in accelerating flows where the acceleration parameter, K , is maintained
constant.

du
AV [os] 1
=5 I _ (15)

K & %

oo

The significance of constant K can pe appreciated if the momentum
integral equation of the boundary layer is written in the following form:

dRe
TEs = S/2 * volU, - KO+ HRey (16)

If K and vo/U°o are maintained constant, independent of x , and
if K 1is finite and positive, the flow must inevitably approach a state of
equilibrium for which Rem 1s constant. This is often spoken of as an
asymptotic-accelerating flow; a special case of an equilibrium boundary
layer in which there is not only outer region similarity (constant G ),

11
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but also inner ragion similarity. The velocity profiles are similar all the
way to thg wall, with the result that not only is Rem constant, but so
also are cf/2 and the shape factor H . Thus, constant K and constant
vo/Uuo together yield a family of similarity solutions for laminar boundary
layers and a family of asymptotic-accelerating layers for the turbulent
case. An interesting feature of Eq. (16) is the fact that for each positive
value of K and each value of F there exists a definite value of Rem :
as K increases, Rem decreases. Experiments indicate that it is impossible
to maintain a turbulent boundary layer if Rem is below about 300. The
corresponding value for K s about 3 x 1070, In other words, if K is
~ of the order of 3 x 10'6. or greater, the turbulent boundary layer will

~ tend to revert to a laminar boundary layer. Evidence of this trend wiil

be demonstrated in some of the experimental data to be presented. ‘

If K 1is negative (i.e., a decelerating flow), no such asymptotic
equilibrium can exist (except as discussed below). Note also that for a
given value of K the rate of transpiration, whether positive or negative,
will have a substantial influence on the asymptotic value of Rem .

Another related type of asymptotic flow can be rerogrized in Eq. (18).
If Vo'l 18 negative, Re will approach a constant when K is zero or
negative, so long as the VO/U°° term is larger in the absolute sense than
the last term. This type of boundary layer is frequently referred to as the
“asymptotic suction layer", and may be either laminar or turbulent, depending
upon the magritude of Rem at the asymptotic condition. Note that for
K=20.C, cf/Z approaches an asymptote, -VO/Um . Physically, the surface
shear force is then precisely equal to the loss of momentum of the fluid
that is brought from the free-stream to zero velocity at the surface. This
represents a lower limit on cf/2 .

The energy integral equation of the boundary layer can be put in a form

similar to that of Eq. (16), for the case of constant surface and free-stream
temperatures. ‘

dile

__'hTUmdx 5 = Sty U | (17)

The important difference is that there is no terﬁ corresponding to the accel-
eration term (or pressure gradient term), Thus if K is a positive constant,
the momentum boundary layer will come to equilibrium, with Rem constant,

12
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but the thermal boundary layer will continue to grow. In fact if K is
" maintained constant for sufficient distance the thermal boundary layer will
grow outside of the momentum boundary layer as Re,, increases indefinitely.

As Eq. (17) suggests, an asymptotic thermal boundary layer exists in -
the case of negative VO/Uoo : _an “asymptotic-suction-layer" similar to the
momentum boundary layer case.

The general question of equilibrium turbulent thermal boundary 1ayers;
i.e., thermal boundary layers having outer region temperature profile ‘
similarity, has not, so far as the authors are aware, been systematically
explored, although Blackwell (1972) has studied adverse pressuré gradient
equilibrium boundary layers with constant surface temperature. If surface
temperature is allowed to vary, additional possibilities for similarity
arise. In order to restrict this paper to a few classifiable types of
boundary layers, consideration will be restricted to thermal boundary layers -
on constant temperature surfaces, with a constant temperature free-stream.

There is no question that the turbulent thermal boundafy Tayer which
forms on a constant temperature surface when the free-stream velocity is
constant does have outer region similarity. There is also a fixed ratio
{for a given Prandtl number) of enthalpy thickness Reynolds number to mo-
mentum tivickness Reynolds number. Even when the boundary layer starts
with widely differing enthalpy and momentum thickness Reynolds numbers,
this ratio of sizes will be approached at points downstream,

When there is blowing or suction with constant free-stream velocity,
and the blowing parameter Bm is maintained constant, it is observed
experimentally that Bh will also approach a constant. The thermal
boundary layer will approach an equilibrium state with a fixed ratio of
enthalpy to momentum Reynolds numbers, regardless of the starting conditions.

Blackwell (1972) observed the same situation for an adverse pressure
gradient flow for which 8 was held constant. Examination of the integral
equations, (7) and (8), might suggest that analogous behavior -for both
boundary layers would be unlikely when there is a pressure gradient, because
B appears in only one of the equations. However, the adverse pressure
gradient is accompanied by a decrease in the surface shear stress (and in
cf/2). but no significant change in heat flux (and St ), with the result

13
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that the rate of growth of both boundary layers becomes the same. A similar
conclusion results from examination of Eqs. (16) and (17). For an equilibrium,
or constant B , boundary layer, the final temm in Eq. (16) tends to vary with
x at the same rate as does cf/2 , and St 1in Eq. (17) also varies at the
“3ame rate.
The equilibrium thermal boundary layer can be defined in an analogous
"~ manner to the equilibrium momentum boundary layer, i.e., a thermal boundary
layer having outer region temperature profile similarity. Following the
form of Equations (9 and 10), temperature defect coordinates are defined,

- (t_-t) jC-/Z (
. + - [ T - !
' Y * Wty TSt T ‘\'X;) (18)
where
b3 = s (R | (19)

Figure 4 shows three temperaturé profiles plotted in these coordinates
for an adverse pressure gradient momentum boundary layer having velocity-
defect similarity. i.e., an equilibrium momentum boundary layer. Note that
the temperature profiles are uriversal everywhere outside of the sublayer.
Thus a constant G , 8 , m equilibrium momentum boundary layer will also
yield an equilibrium thermal boundary Yayer when surface temperature is
constant. The same thing is true if there is-transpiration with Bm con-
stant: Bh will become constant and similar temperature profiles result.

This behavior might also be anticipated from experience with the
laminar boundary layer similarity solutions. Recall that the condition of
Eq. (1) leads to laminar similarity solutions for the thermal boundary
layer, so it is not surprising that this condition leads also to equilibrium
turbuient thermal houndary layers. o

In summary, equilibrium turbulent momentum boundary layers, having

outar region velocity profile simiiarity, can be achieved by hoiding con-

14
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stant the pressure gradient parameter, B8 , and the blowing parameter, Bm .
Experimentally, these conditions can be established by adjusting free-
stream velocity, U ; and transpiration velocity, Vg o according to the
condition of Egs. (1) and (2).

A special case of momentum boundary layer equilibrium is approached
for accelerating flows when the acceleration parameter, K , is maintained
finite and positive. For this special case the velocity profiles possess
both inner and outer similarity.

Equilibrium thermal boundary layers are obtained, if surface and free- ’
stream temperature are maintained constant, under the same conditions lead-
ing to equilibrium momentum boundary layers, '

The special case of a constant acceleration parameter, K , does not
result in an equilibrium thermal boundary.

18
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EXPERIMENTAL RESULTS

The objective of this section is to illustrate the hydrodynamic and
heat transfer behavior of equilibrium and near-equilibrium turbulent oo

boundary layers subject to blowing and suction, acceleration and decelera- .-~

tion of the free stream. These are the cases used ic generate the dif-
ferential correlations used in the mathamatical model described in the later
portions of this paper. They show the principal physical responses uf the
boundary layer and serve to illustrate the complexity of the prediction
problem. No attempt has been made tu present a complete survey of the avail-
able data. The reader interested in the complate data sets should acquire
the referenced theses, which contain full, tabular. data sets. The objective
here is:simply to provide the reader with insight into the nature ¢f the.
physical response of the boundary layer. -

The Stanford experimental results all derjve from the same basic ap-
paratus, described by Moffat (1967), modified by subsequent authors to per-
mit studies of accelerating and decelerating flows. ‘

The apparatus is an open circuit wind-tunnel whose test section is §
feet long, 20 inches wide and approximately 6 inches high at the inlet erd.
The Tower surface of the test section is the poraous working plate-while the
top is a control surface and can be adjusted to vary the free stream velocity
in the streamwise direction. The porous plate is gubdivided into 24 strips
each 4.0 inches long in the flow direction and each provided with a transpira-
tion flowteter a set of imbedded electric heaters, and temperature measuring
instrumentav.on. Heat transfer rate is deduced from the measured electrical
power by energy balance, accounting for the heat losses from the porous strip
to its surroundings by conduction and<radiation., All tests were conducted
with air as the transpired fluid as well as the main stream fluid, and with -
small temperature differences (approximately 25°F) to minimize the effects
of properties variation through the boundiry layer. |

The porous plates are known to be uniform within +6% in permeability
in the center 6-inch span, where the data are taken., The plates were custom
made by sintering bronze particles together in a polished stainless steel
mold cavity. The particles ranged in size from 0.002 to 0.005 inches in
diameter. The fabrication technique resulted in a porous material whose
surface feels smooth to the touch and which displays a roughness of 250
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micro-inch2s on & standard Surfa-gage test. The plates were jnstalled with

~an indulating spacer of (.020 thicknass between adjacent plates, with the

joints finished by hand until they were not discernible to the touch.

Wall temperatures weve held uniform to within +0.5°F in cases reported
as "constant wall temperature" to reduce conduction transfer between plates.
Main stream velocity was shown to -be uniform in the span-wise direction
within +.4% with the free stream turbulence intensity being about 1/2%.

3‘Span-wise tests of the boundary layer development show the momentum thick-

ness to be uniform within +2% across the measuring portion of the tunnel.
Three-dimensional effects on the heat transfer measurements were investi-

" gated by comparing boundary layer profiie integrals with heat transfer

integrals along the plate. Simpson (1967) concluded that the 3-D effect

- -was not larger than 3%. It follows from the similarity between the energy

‘and momentum equations that three-dimensional effects on skin friction

data should be of the same order of magnitude.

: Statements regarding the “relative uncertainty" of Stanton number have
Jittle meaning since blowing tends to force the Stanton number to zero.

Absolute uncertainties have more meaning, and will be referred to here.

The stochastic component of uncertainty in reported values of Stanton num-

ber is about +0.0001 Stanton number unit. This value was estimated by

applying constant probability nropagation of uncertainty to the data re-
duction program using standard uncertainty values for the input measurements.
Values of the skin friction coefficient are more difficult to measure than
heat transfer and tend to be less certain. In addition, the skin friction
data tend to be sparse (for example, the Stanford results nresent only 4 or
5 values of skin friction per situation whereas 24 values of Stanton number
are presenced), and therefore admit of larger differences in opinion in
interpretation. Thus, although the stochastic component of uncertainty in
gach measurement may be +5%, there may be differences in interpretation of
the same data by different investigators due to differences in curve-fitting
coordinates etc. which are as large as 10% or 15% (see Squire, 1970).

The Experimental Boundary Conditions

The overall program from which the present examples of data were taken
covered accelerating and decelerating flows as well as variations in wall

17
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Lomperature and blowing. Thic range precluded the use of x-Reynclds number

as a useful correlating parameier and lead early to the use of the iocal

" boundary thickness Reynolds number {either momentum- or enthalpy-thickness)

for presentation of the results. It-was shown, by the ctudy of Whitien

- (1967), that for unifom free stream velacity, the buundary layer would ad-
~ just to even a:step change in blowing within 2-5 boundary layer thicknesses.
- It can be seen by comparing his.data with those. of Moffat (1967}, that'qni-

form blowing {constant F flows) produced the same value of Stanton number
for a given enthalpy thickness Reynolds number as did constant B Fiows.
With the validity of "local equilibrium" estaklished te at least this ex-

tent, it was possible to conduct the remaining experiments with the simpler

(experimentaily} boundary tondition of constant ¥ rather than the true
equilibrium situation. of tonstant B . Its believed that .y effects of
this simpiification will be found only in the veldcity and temperature pro- .
files, and then 6n1y=in the outermost parts (i.e., the wake region}, since °©
the inner region'responds so rapidly to the wail conditions. i

Acceleration: were characterized by a-constant value of K , defined

du _

as 535-3;2 . Such a flow is Offfynqamental value, as §hown earlier, and

0

also has the merit of heing easy to establish since it naturally occurs in

the case of a channel formed betweern two converging planes {except for second

order effects due to the growth of the displacement thicknesses).. It was
hypothesized, at first, and then contirmed experimentally, that the asymptotic
state would result in a constant vaiue of 'cf/2 . This has the effect that
constant F is also constant B hence, although the 2xperiment was set up™
as constant F , it resulted in a completely equilibrium situation with
both K and B reasonably well fixed in the accelerating regibnh

The decelerating flows were set to nearly constant § pressure gradients
by fixing U_ = U] XM with m negative and x determined with respect to
the virtual origin. Blowing was set by specifying constant F , relying upen
the trend towards local equilibrium. The results showed no discernible ef-
fect of deceleration upon the relationship between Stantun number and en-
thalpy thickness Reynolds number: the sane correlations which worked for
the flat plate case works for constant 3 decelerations. Hence, it seems
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safe to assume that the local relationship determined by an sxperiment at
censtant F is the same relationship which would have been fcund in 2 con-
stant B experiment.

Constant wall temperature was used throughout the base-line tests re-
2 ported here, with an average temperature difference of about 25°F between
-the free stream and the wall. No correction has been made for the effect
: ) of variable fluid properties except to the initial “qualification runs”
B '":A which validated the apparatus in the flat plate, no-hiowing test rase.
" Some tests have been made to document the response of the boundary layer

to steps and ramps in temperature and to arbitrary distributions of blowing:

. these serve as check runs, against which one can test models of boundary
Y . layer behavior based upon the differential and integral correlations de-

) ‘ rived;ﬁxam_ihe;equili@rium-expsriments."*' o

SRR A U A S S U B2 e e o

" Correlations of Results -

g .~ The'principal correlatisns deduced from the present data set are the

’ . differential ones: - the t@rre¥ations uéed to model the mamentum mixing
liength and the turbulent Prandt! number in the finite difference computing
method déscribed in the laiter paft of tnis paper. There is, however, use
for integral corraigtions such as "Stantan number as a function of enthalpy
thickness Reynolds number, F , and K or 8" . The range of validity of
such integral correlations is necessarily less than that of the differential
correlations, since the latter have the differential equation to help cope
with the changing boundary conditions. Within their Vimited range, and
accuracy, however, such correlations are extremely useful, particularly
when kept to simple functional forms. '

The resuits of the present duta set are, therefore, presented in both
ways: integral and differential correlations. Discussion of the dif-
ferential correlations is collected in the last two sections. The integral
correlations are discussed with the data since they help to clarify the
organization of the results.

Heat Transfer Results for U00 = Constant

The principal effects of transpivation on heat transfer thru a constant
velocity boundary layer are shown in Figures 5 thru 7.
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Figure 5 shows Stanton number as a function of x-Reynolds- number for
uniform blowing and suction. The blowing fraction, F = 4"/G_, is the
ratio of the mass velocity through the surface (h") to the free-stream mass
velocity (G_). It is apparent that blowing (h"/G_ > 0) and suction
(h"/6_ < 0) both have large effects: blowing tends to drive the Stanton
number towards zero as the blowing fraction increases whereas suction tends
to force the Stanton number to an asymptotic value numerically equal to (-F).
This behavior is illustrated in Figure 6, which shows St as a function of é
#"/G parametric in x-Reynolds number. The region of boundary layer behavior
is thus seen to lie between M"/G of roughly F = +0.01 for this range of
Reynolds numbers.

It is worth noting that all of the features shown in Figures 5 thru 7
can be recoveied, with good accuracy, from a finite difference program using
a damped mixing-length closure: the damping needs only to be made a function
of the transpiration rate - no other change need be made. The evidence is
that the main effects of blowing are confined to the inner portion of the
momentum boundary layer: blowing changes the shear stress distribution and
reduces the effect of the sublayer. The diminished influence of the sub-
layer cen be simulated by making the damping factor, At , smaller as the
blowing fraction increases, producing velocity profiles which closely re-
semble those shown in Figure 13. Experiments show that the turbulent
Prandtl number is not much affected by blowing, and the A" variation alone
results in satisfactory prediction of the principal features of the heat
transfer. This point is developed in the third section of this paper, and
an empirical correlation is presented for N as a function of the blowing
and the pressure gradient conditions. Correlations of this sort, for use
with finite difference programs, are described as ifferential correlations”
to distinguish them from the more conventional "output oriented" correla-
tion.

Within the range of values covered by the present dcta set, the gvfect
of blowing can also be described by a correlation in Stanton number co-
ordinates.,

The data show that the ratio of Stanton number with blowing, St , to
Stanton number without blowing, Sto » is a unique function of the blowing
parameter B . The comparison can be made at the same x-location (same Rex)
as given by Equations (20) and (21):
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2n(1 + B.)
Sto Bh
Rex
or, equivalently,
St - b
§E; i eB -1 (21)
Re
X
_ Ihll
mtl
and b = : {23)
§m§to

Equations {20) and (21) were presented during the early 1950's by
several workers in the field as "stagnant film theory" or “Couette flow"
models. The agreement between the data and Eq. (20) is shown in Figure 7.
In part, the good agreement results from the implicit nature of Eq. 20
diminishing St reduces both St/Sto and (1 + Bh)/Bh » hence preserving
"good agreement".

As mentioned earlier, the objective of the overall research program
suggested an early search for local descriptors of boundary layer behavior.
In particular, emphasis was focused upon the relationship between Stanton
number and enthalpy thickness Reynolds number. It was natural, then, to
seek a way of predicting the effect of blowing in local coordinates: i.e.,
St/Sto at constant enthalpy thickness Reynolds number.

The data of Figure 5 have been re-cast to show Stanton number versus
enthalpy thickness Reynolds number and plotted as Figure 8. Values of
enthalpy thickness for this plot were calculated from the measured Stanton
number data and the blowing fraction by integrating the two-dimensional
energy integral equation but values derived by this method agree well (5-
6%) with values deduced by traversing the boundary layers. An empirical
form could be deduced from this figure but a better guide is at hand.

-
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Whitten (1967) showed that Eq. (20) could be combined with the two-dimensional
energy integral equation and with an equation describing the variation of Sto
with Rex to yield the following form:

1.25
an(l + B
gt - h (] + Bh).25 (24)
o Reh Eh

Equation (24) was developed from Eq. {20}, hence all of the data for
U, = constant fit Eq. (24). Implicit in Eq. (24) is the notion of local
equilibrium: it is presumed that knowledge of Reh and B will fix
St/Sto , regardless of the upstream history. The validity of this hypothesis
was tested by experiments in the vicinity of a step change in blowing. Such
data are shown in Figure 9. The boundary layer is seen to respond very
rapidly to the step, with Stanton number dropping almost all the way from
the unblown value to the uniformly blown value within one plate width (4 -
inches in the flow direction). The boundary layer thickness at the point
of the step (99% velocity thickness) was approximately one inch hence the
“local equilibrium is re-established in about four boundary layer thicknesses.
Thus, Figure 9 shows a strong "local equilibrium" tendency, favoring the
use of Eq. (24) for cases of variable biowing as well-as cases of uniform
blowing and opening the door for substantially local predictions of the
boundary layer behavior. An example of a more complex case is shown in
Figure 10, in which a 1inearly decreasing blowing, F = 5 x 10'5(x) , Was
combined with a shainly variable wall temperature. Whitten (1967) predicted
the outcome using local equilibrium in combination with a superposition
method.

Skin Friction Results for U, = Constant

The principal effects of transpiration on the skin friction coefficient
of a turbulent boundary layer are illustrated in Figures 11 and 12. Figure
11 shows the early rasults of Simpson (1967), derived from pitot probe
surveys of the boundary layer. Figure 12, in Rem coordinates, includes
later resuits of Andersen {1972) for comparison. As can be seen, there
are considerabie differences in the results. Our present opinion is that
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the values near the bottom of 2ach band are-more representative than those
near the top. Andersen's data were taken with a rotatable, slanted, hot wire
probe measuring turbulent shear stress near the wall and extrapolating to
the wall using a partially integrated form of the boundary layer momentum
integral equation. His data are less sensitive to interpretive differences
than were Simpson's. who determined cf/2 by differentiating a curve fit
thru measured values of momentum thickness. Squire (1970), previously
mentioned, pointed out that Simpson's momentum thickness data could be inter-
preted to show different values of cf/2 , by 10% or more, simply by choosing
different coordinates in which to curve fit the momentum thickness variation.
The variation of cf/2 with blowing is essentially the same as that
of Stanton number: the ratio Cf/Cfo can be calculated from the blowing

parameter Bm » Wwhere the subscript signifies B defined with cf/Z instead
of St .

c an(1 + B_)
t—:f_‘ = _._?__.".L. (25)
fo m
Rex
1.25
c an(1 + B )
1 . m (1+8 )2 (26)
cf Bm m
0
Rem
I
where B, = o, (27)

It is presumed, based on the strongly local behavior of St , that skin
friction would be similarly quick to respond to a step in blowing.

Velocity and Temperature Profiles

Velocity and temperature profiles in inner coordinates are shown in
Figures 13 and 14 for the case of constant velocity (about 40 fps), constant
wall temperature (AT about 25°F), injection of air into air. The general
features of the region “rom y+ =10 to y+ = 100 can be deduced from a
Couette flow analysis using a mixing length model assuming no effect of
blowing on the mixing length distribution. Such an analysis leads to a
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closed form "Law of the Wall" representation for the fully turbulent recion.
Analyses of this sort have been presented by Black and Sarnecki (1965),
Stevenson (1963), Simpson (1967), and others. Thus the dramatic "uplifting"
in the outer regions reflects mainly the effect of the transpiration flow
on the shear stress distribution in the layer - not a drastic change in the
mechanism of momentum transfer.

Figure 13 shows data from two programs (Simpson and Andersen) which used
different methods of evaluating the friction factor (used in both the ut
and the y+ coordinate definition). The difference shown is, again, due
to the difference in reported values of the friction factor. Our present
opinion favors values near the high sides of the bands shown, rather than
the low side.

Data inside of y+ = 10 are suspect because of the possibility of

‘probe errors due to wall displacement effects and shear effects. No definitive

studies have been made concerning probe corrections in the presence of tran-
spiration, hence no corrections were made to these data. To some extent,
the situation is ameliorated by the fact that the finite difference program
is only required to "bridge the gap" between y+ =0 (u = 0) and y+ =10
(u+ known) by some reasonable means to get into a region of reasonably well
known behavior.

Relatively 1ittle has been done in terms of measuring the temperature
distributions in turbulent boundary layers with transpiration. Figure 14
shows some results of Moffat (1967), Blackwell (1972), Thielbahr (1969), and

Kearney (1970) for some cases of blowing and suction. The parameter tt s
defined as follows:

C C
£ £
t-t b
+ 0 2 T 7
v (28)

fic>

Note that t+. includes cf/2 as well as St in its definition, hence
is sensitive to the hydrodvnamics as well as the heat transfer. This form
follows from a Couette analysis in which the terms are made dimensionless
using u. . The fact that t' includes both cf/2 and St means that
tf profiles have inherently more scatter than u* profiles. In fact if
one examines Eq. (28) in terms of an uncertainty analysis on a simple product
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form, at any value of y+ , the value of t" includes an uncertainty com-

{ Ce
ponent due to t , a component due to Ei , and one due to St . If St

is uncertain within +5%, and cc/2 s uncertain within 102, and T within

2%, then
+ 2 o\ 2 172
R R e 9
2
we have
ﬁ%l = {.0004 + .0025 + .0025}"/2 = 0.073 (30)

In the cases with high blowing, ¢&(St) and G(Cf/Z) remain relatively fixed
(or perhaps even become larger) while the values of St and ce/2 approach
zero, yielding large percent-wise inaccuracies in St and cf/Z . These
are propagated immediately into £+,

In short, one should be more cautious in attributing significance to
the details of t variations than to u’ variations, because of the added
uncertainty involved. Since the major uncertainties involved appear in
multiplicative terms, the slopes of the £ - y+ figures are affected when
shown in the conventional semi-log coordinates.

When air is the working fluid and the transpired fluid the values of
Prandtl number and turbulent Prandtl number are both near unity. It would
be expected as a consequence, that U and t would be similarly distributed
within the boundary layer in a constant velocity flow. This is the case,
as a review of the data of Moffat (1967) or Whitten (1967) will show., In
view of this, it is reasonable to expect £ to vary 1ike ut within the
layer.

If, at every y+ :

t-t
u T 2T p —2
0 AU t 2 T, (31)
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. + u +, t Cr
with u A e and t A %t V7 (32)
+ . +f%/2 |
Then t * u (—Z—t- (33)

Thus, for the case of constant free stream velocity, we should not find
great differences in the profiles, in these coordinates.

s ekt b e e

Flows Subject to Acceleration

Early in the 1960's it was observed by several studies that the Stanton
number was dramatically reduced by a strong acceleration. The relationship
- between Stanton number and enthalpy thickness Reynolds number strongly re-
sembled the behavior expected of a laminar boundary layer. As a result of
this similarity the phenomenon was labelled “re-laminarization" and occupied
a number of workers throughout the late 60's and carly 70's. There was gen-
eral agreement that a suitable acceleration parameter could be taken as

v du,
K = -Jz- Ix (34)

~ though some felt that a better form would include cf/2 to some power in
the denominator. We used K , given by Eq. (34), as the acceleration
parameter. As has earlier been shown, constant K boundary layer flows
offer a possibility for asymptotic or equilibrium boundary layers. Such a
possibility is attractive, experimentally, on three counts: (1) it is
relatively easy to accomplish (a constant K flow can be achieved using con-
vergent planar walls) and, (2) it produces a possibly-simpler family of
responses by the boundary layer, with a better chance of revealing the
Sindamental effects and (3) it helps resolve the dilemna of which possible
cases, out of the infinite number of possibilities, to choose. Evidence
of "local” behavior already mentioned, suggests that slowly varying K
conditions can be treated as quasi-equilibrium states.

Heat Transfer to an Accelerated Flow

Figures 1% thru 18 show the effects of acceleration on heat transfer
for values of K between 0.57 x 1078 and 2.55 x 10°% with transpiration
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controlled to yield constant F along the surface. The intention was to
achieve and hold the asymptotic accelerated state for as long as possible,
hence it was desired to start the acceleration at the particular value of
momentum thickness Reynolds number appropriate for the values of K and F
being used. The momentum integral equation was used as a guide to choosing
the starting value of momentum thickness Reynolds number. The validity of
this assumption and the accuracy of the “set point" can be judged from
Figure 21 which show that momentum thickness Reynolds number did, in fact,
remain substantially constant throughout the test section in a typical run.

In every case shown in Figures 15 thru 18 a flat plate, turbulent
boundary layer with uniform transpiration was established in the tast section
and allowed to grow with length until the desired momentum thickness Reynolds
number was reached. At that location, the top wail of the test section was
adjusted to set in the convergence required to yield the desired value of
K . Total and static pressure measurements were made at four inches inter-
vals along the test section to check that K was, in fact, constant through-
out the test region.

It might have been argued that two effects were present in these tests:
(1) acceleration, and (2), high velocity flow. Flat plate tests were con-
ducted at velocities up to 126 fps to ensure that Stanton number remaineda
the same function of enthalpy thickness Reynolds number at the high velocity
end of the test section as at the low velocity end. At 126 fps the Stanton
number correlation was indistinguishable from its values at 40 fps, though
the friction factor was high by 5-7% (momentum thickness method). Thus it
is felt that there are no contaminating effects present: the changes in
Stanton number shown in these results are those due to the acceleration level,
not the velocity level.

Figures 15 thru 18 show Stanton number versus enthalpy thickness Reynolds
number for the different cases studied, compared with reference curves for
flat plate behavior. As a general comment, for a given enthalpy thickness
Reynolds number, acceleratior ombined with suction reduces Stanton number,
whi e acceleration combined with blowing increases Stanton number with re-
~ spect to the transpired flat plate correlation. To illustrate this trend,
note the progression of Stanton number behavior for F = -0,002 (moderate
suction) shown in the four figures. At K= 0.57 x 10'6 the Stanton number
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slowly falls away from the flat plate result, being low by about 10% at the
end of the test section. At K= 0.77 x 1070 the decline is more pronounced,
with the terminal value Tow by almost 20%. At K = 1.45 x 10°® the drop is
nearly 40%, and the boundary layer seems to return only slowly to its flat
plate behavior. For suction, the stronger the acceleration the greater the
depression of Stanton number.

With blowing at F = +0.004 , a more complex change in behavior is noted.
With K = 0.57 x 10'G the Stanton number values rise above the flat plate
case by as much as 40% at the end of the acceleration, and at K = 0.77 x 10'6
the elevation has reached 66%. For larger values of K , however, the be-
havior returns toward the flat plate correlation: at K = 1.45 x 10'6 the
elevation is only 35% and at K = 2,55 x 1076 the data 1ie once more on the

"~ flat plate correlation. A general trade-off can be inferred, between the re-

laminarizing effect of acceleration and an apparent destabilizing effect of
blowing. For positive values of F and K , the neutral values seem to lie
along a line relating K and F such that if F exceeds 1.5 x 103K s the
value of Stanton number will be increased by the joint effect, and if F is
less than the neutral value, Stanton number will be reduced. -.

Figure 17 also shows data for a strong suction layer: F2 -0,008 (strongA ‘

suction) and K = 1,45 x 1076 (moderate acceleration). The trajectory
shows that an asymptotic suction layer was attained for these conditions, in
the presence of strong acceieration. The first few data points show Stanton
number diminishing from 0.005 to 0.0045, in the approach region, in a typi¢a1
turbulent suction layer fashion. The acceleration begins at an enthalpy
thickness Reynolds number of 400, and Stanton number immediately begins a
sharp drop. With suction at F = -0.004 , the condition of thermal equilib-
rium at the surface requires that the Stanton number be at least as large
as -F and the decline of Stanton number is stopped at that level. With
Stanton number numerically equal to -F , and a constant wall temperature,
the energy content of the boundary layer ceases to change. The increasing
values of U, with distance then slowly drop the value of enthalpy thick-
ness Reynolds number, and the data points more sequentially to the left, at
constant Stanton number.

No attempt has been made to devise an empirical formulation for pre-
dicting Stanton number in terms of enthalpy thickness Reynolds number, K ,
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and F . Complex as it is seen to be in these figures, this 1; still -only

part of the story. A1l of the data in these four figures are from asymptotic
accelerated flows, where the flow entered the accelerating region at, or

nearly at, the appropriate value of momentum thickness Reynolds number. As = .-
will shortly be seen "overshot" or "undershot" layers, where the entering

values are either larger or smaller than the asymptotic values behave much
differently in the accelerating region.

Figures 19 and 20 illustrate the effects of inlet conditions on the
response of the boundary layer to a strong acceleration. In-Figure 19, the
accelerations began at momentum and enthalpy thicknesses between 800 and
1000, with the high K runs beginning at the Tower values. Luoking ahead
.to Figure 22 shows these to be neaf]y the asymptotic values. The solid
symbols in Figure 19 show the behavior of the Stanton number within the
accelerated region, and display a regular progression of slopes. With these

-curves as a baseline, a series of tests were run at a fixed value of
K=2.55x ‘IO'6 varying the initial momentum and enthalpy thickness Reynolds
numbers. The results,in Figure 20, show that the slope of the Stanton number
correlation is not a unique function of K but depends upon the initial
conditions. In Figure 20, the square symbols represent a near-equilibrium
combination, with momentum thickness and enthalpy thickness Reynolds numbers
within 100 units of one another, énd of the same approximate values as shown
in Figure 19. It is worth noting that if the enthalpy thickness is kept
small (in this case by delaying the heating) the response of the Stanton
number to the acceleration is diminished. On the other hand, if the en-
thalpy thickness is held nearly constant, and the momentum thickness in-
creased, there is relatively less change in behavior from the reference case.
When-both the enthalpy and momentum thicknesses are increased to large values
prior to the acceleration (an "overshot" case), then the Stanton number comes
down very abruptly in the accelerating region. For the strongly "overshot"
entrance conditions it is not possible to obtain a long run at equilibrium
conditions, hence most of the data shown are in the region where the boundary
layer is still adjusting to the acceleration,

The solid line shown for comparison represents the similarity solution
for a laminar wedge flow with a very thick thermal boundary layer. It seems
clear, from these data, that the same relative variation of Stanton number
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could be attained by different non:éQui1€brium combinai?onsxqf,enthalpy
thickness Reynolds number and acceleration. The effecis ef a non-equilibrium

combination of momentum thickness and acceleration cannot be uniquely identi-

fied by the value of K alone. Heat transfer in non-equilibrium accelera-

“tions is inherently responsive to all three variables: the acceleration

parameter, the momentum thickness, and the enthalpy thickness.

' The combination of acceleration and blowing has been shown, by these
experiments, to be strongly nor-linear in its effect on the boundary layer.
Empirical descriptions of this behavior are difficult to assemble in "output"
notation. To express Stanton number as a function of Reh s K. and F 1in
such a way as to recover all of the aspects shown in Figures 15 thru 20 would
require a good deal of ingenuity. It is, however, relatively straightforward
to predict this data set using a modified damping factor in a mixing length
formulation. If the damping factor, A , i5 expressed as a relatively simple
empirical function of F and K , the principal features of all the preceding
data are recoverable within about 10%.

Momentum Transfer to an Accelerated Flow .

The decision to test equilibrium acceler~ted flows places some con-
straints on the behavior of the momentum boundary layer as illustrated in
Figure 21. Here, for accelerations at a value of K= 0.75 x 10'6 , are
trajectories of the boundary layer behavior for different values of F .

The broken lines suggest the behavior of the skin friction and momentum thick-
ness Reynolds number at various stations along the plate prior to the begin-
ning of the acceleration. The vertical bar shown for each set is the last
point in the unaccelerated flow. Considering the data for F = 0.006 , after
the acceleration begins, the momentum thickness Reynolds number grows only
slightly, from 3000 to 3700, and does not change further with length along
the plate. At the same time, the value of the skin friction coefficient
rises quickly to a final value above the flat plate value and then remains
unchanged. The equilibrium point thus established is characteristic of this
combination of acceleration and blowing. In each of these data sets, the
acceleration was begun at or near the predicted value of the equilibrium
momentum thickness Reynolds number, to reduce the transient effects as much
as possible. The way in which the asymptotic values of momentum thickness

30

~—

v ot £ AP s W L 52 e S+

(VSR PRNARCN Y S




it Lot AR B A e b Al i R i Al A SRR S S e ot e L et WE.

Reynolds number vary with K and F 1is shown in Figure 22. Each symbol
shown represents an experimentally achieved equilibrium state. Asymptotic

E‘ ;; | values of cf/2 established by these equilibrium flows are shown in Figure
v . 23. Again, each symbol represents an experimentally achieved equilibrium
‘ '2 state. Some confusion existed in the data sets for K= 2.5 x 10'6 and

F =0 and four different terminal states were achieved. All are shown,
but symmetry with the other data sets suggests that the higher value be
used. ' '

_ The momentum boundary layer for an asymptotic accelerated flow has A

thus a relatively simpie description. Being uniquely specified by F and ’

K , there is no need for a "size dependence" and, in essence, the complexity , .

_ of description is reduced by one variable. The asymptotic value of friction- - ,5%
e . factor with blowing, can be predicted with reasonable -accuracy by applying K
’ Eq. {26) to the unblown asymptotic value at the same K . Since F and K
uniquely determine the asymptotic thickness, (see Figure 21 or 22) there is

O

no need for a statement ".. at the same momentum thickness Reynolds number..." :»j
and, in fact, such a proscription cannot be enforced in the context of com- - e
paring asymptotic boundary layers with the same value of K and different - -

values of F .

Mean Velocity and Temperature Profiles in an Accelerating Flow

In a constant K , asymptotic boundary layer the momentum thickness
Reynolds number ‘seeks some characteristic level, as does the friction factor,
and the velocity profile assumes a stationary shape in u R y+ coordinates.
This is illustrated in Figures 24-A, 24-B, and 24-C which show the profiles ‘ ﬁ
as they developed in the strecmwise direction. For the two lower values h
of K , the momentum thickness Reynolds number was a constant throughout
the Tength of the test section to within 10% and close to the asymptotic :
values shown in Figure 22. The profiles show a close similarity in both
inner and outer regions. At K= 2.6 x 10'G the boundary layer was
"overshot”, entering with a momentum thickness Reynolds number of 750 com- g
pared to the asymptotic value of 480 (from Figure 22). As can be seen, ;
the boundary layer did not reach an asymptotic state, though the last pro-
file (in the streamwise direction) could be taken as representative. The :
corresponding temperature profiles are shown in Figures 25-A, 25-B, and
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25-C. For the two lower accelerations the temperature profiles remain
reasonably similar, showing small changes in the outer region (for y+ >
100) which can be seen to increase in magnitude as K increases. Reviewing
g - Figures 15 and 17 shows that the Stanton number values for these conditions
f; ¥ ; ~were only slightly affected by the acceleration. When the value of K

% reaches 2.5 x 10'6 + however, as shown in Figure 25-C, the temperature pro-

file shows a drastic difference, with the profiles strongly non-similar in

the streamwise direction. The effect is felt all the way in %o y+ near 10.
~ The Stanton number data in Figure 18 shows this combination cf conditions to

~ result in a drop in Stanton number which reaches 40% at the downstream end of
the test section.

The “terminal states" of ‘the velocity and temperature profiles are shown
for high and low accelerations (K = 0.57 x 10°% and 2.6 x 70'5) in Figures
26-A and 26-B and 27-A and 27-B for various values of blowing. The phrase
“terminal states" is used because, while the profiles shown for velocity are
representative asymptotic profiles, those shown for temparature are simply
the last measured profiles: the energy boundary iayer continues to grow, a
longer test section would have yielded a different "last" profile. .

The temperature profiles shown for K = 2.6 x }O~6 display inner region 3
similarily, out to about y+ of 100; no such coherence is visible in the
data for K =0.57 x 1075 | '

i : . The velocity and temperature profiles shown in Figures 24 thru 27 il-

' lustrate the main structural features of the accelerated turbulent boundary
iayer. These data have been used as guides in refining the physical models
used in the Stanford finite difference computer program for boundary iayer
calculations. This work is described in a later section.
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Flows Subject to Decc’eration
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Decelerating flows differ from accelerating flows in that no asymptotic
beundary layer state is approached, even though an equilibrium flow is
established. The condition of equilibrium between {he pressure-gradient

~ force and the shear force is expressed by the parameter B8 given earl 2r
{Eq. 6 ) and it has been shown experimentally that boundary layers for which
B is constant with length display a constant value of G , the Clauser shape
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‘factor. An extension of this observation, based on the present data set, is
that & remains constant with length whenever (B + 8,) remains constant,
where Bm is the momentum blowing parameter.

The experimental boundary conditions which prcduce flows with constant
g are those for which the free stream velocity varies with distance to some
power, “m". This introduces an experimental difficully centering around the
identification o the virtual origin of the boundary layer. It would not be
appropriate simply to measure “x" from the leading edge of the test section
unless {a) the boundary layer were of zero thickness at that point and (b)
the boundary layer were fully turbulent from the leading edge onward. It is
an observation of the work reported by Andersen (1972) that when "x" distance
is measured from the virtual origin and velocity varies with some power of
X , then equilidrium boundary layers are achieved: both 8 and G remain
substantially constant with length along the test section, after a brief
accommodation. The decision was also made, in the Stanford program, to
restrict the study to flows which did not approach separation. For this rea-
son only small negative values of "m" were used. It was anticipated that
nigh blowing would tend to encourage separation, hence data were taken only
for cases of suction and small blowing.

Since no asymptotic state is attained in a decelerating equilibrium
fiow, the Stanton number and friction factor values vary with .:'mdary layer
thickness Reynolds numbers and the data resemble the flat plate data in their
general dependences. | ‘

Heat Transfer in Decelerating Flows

Figures 28 and 29 show the variation of Stanton number with enthalpy
thickness Reynolds number for moderate and strong decelerations with blowing
anc suction. The solid lines through the data represent flat plate behavior.
The sawre correlation applies to both cases of decelerated flow as appiies for
the flat plate case. The effects of blowing are to reduce Stanton number
but, again, exactly as was observed for the flat plate case.

In terms of the surface heat transfer behavior of the boundary layer,
then, one can say that adverse pressure gradients pose no new prablems,
within the range of conditions encountered in this study. Whatever effects
the adverse pressure gradient may have on the structure of the boundary
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layer, in terms of changing the sublayer thickness or the turbulent transport -
mechanisms, the net effect is the same as for a flat plate situation. What- :
ever internal corre’ations are proposed to describe the effects of pressure
gradient on the boundary layer must, then produce this same behavior for
decelerating flows.

The heat transfer characteristics for the decelerated Tlows reported
here can be described by ' |

_ -0.25
st, = 0.015 Re, | (35)

1.25
an{l + B, )
st ] h .25
33 - B (1+8) - (36)

Here, Sto is defined as the value of Stanton number without blowing but
in the adverse pressure gradient, and St 1is the value of Stanton number

in that same adverse pressure gradient, with blowing, at the same enthalpy
thickness Reynolds number.

Momentum Transfer in Decelerating Flows

Although the heat transfer behavior in decelerating flows can be ade-
quately described in terms of flat plate correlations, the momentum transfer
cannot. The effect of an adverse pressure gradient is to decelerate the fluid
in the boundary layer causing the momentum thickness to increase more rapidly
than it would due to wall shear alone. The variation of cf/2 with pressure

gradient is shown in Figure 30 and summarized by the following recommendations,
for flows in which U_ = lem with "m" a constant.

oy .
N R o -
. J R 20

c 4

“A(_;g) - ake 0% (37) %Z

where %’
U = constant a = 0.0120 (850 < Rem < 3000) ?
T a=0.0102 (1500 < Re, < 3500) 2

U, = upx 20 a=0.0083 (1700 < Re_ < 4200) ;

U, = upx27® 320,008 (2000 < Re_ < 5000) ‘
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Near the entrance of the test section the values of G and B8 were usually
not stabiljzed, with B continuing to rise for the first two or three data
points to its final value. The forms of the curves therefore reflects this
accommodation: only the last six data points should be taken to represent
equilibrium conditions. The data for m = -0,275 shows much scatter:
are difficult conditions under which to measure the friction factor. The
line shown passing through the data must be regarded as only a suggestion, at
best. "

Blowing increases the momentum deficit of the boundary layer and would
aggravate a tendency to separate due to an adverse pressure gradient, so
combinations of blowing with deceleration are prone to early separation.

For this reason, the blowing data shown on Figure 31 is restricted to a mod-
erate deceleration (m = -0.15) and moderate blowing. The data in Figure 31
include all recorded values within the region of constant 'm". In the en-
trance region the values of 8 and G were not usually stabilized, with

B continuing to rise for the first two or three data points. In this region

of increasing B , the value of cf/Z shows a rapid drop with Reynolds num-
ber. In the region where B was substantially uniform, the variation of
cf/2 with Reynolds number is similar to that observed on a fiat plate. In
particular, the relative effects of blowing on skin friction are similar to

those observed on a flat plate (though, of course, the unblown values are
much different) and are once again predicted well by:

' 1.25
cf (] + Bm)

0.25
e L W ]

(38)
m
0 Rem

where Bm is the momentum blowing parameter.

Velocity and Temperature Profiles for Decelerating Flows

Velocity and temperature profiles for mbderate deceleration (m = -0.15)

are shown in Figures 32 and 33 in wall coordinates. The velocity profile is

relatively unaffected by the deceleration inside y+ of 200 either for

suction or for no blowing. Blowing at 0.004 has a very pronounced effect,

however, raising the values of o at every y+ greatar than about 10.

The profiles of ¢t are less affected by the deceleration than are the
profiles of o » being slightly lower across the board.
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Integral Relationships for Friction Factor, Stanton Number and Shape Factor
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The preceding sections have discussed data for flat plate flows (U_ =
constant), asymptotic accelerating flows (K = constant) and equilibrium
decelerating flows (m = constant). For each of these hydrodynamic situations
data have been presented for different transpiration levels both positive
(blowing) and negative (suction). In addition, one can envisage flows with
wall temperature variations such that the thermal and momentum boundary layers
might be of considerably different thicknesses. 1he number of combinations
of these boundary conditions is very large, and it would indeed be surprising
if any correlation could be contrived which would describe Stanton number or
friction behavior directly and which would cover more than a small range of
these conditions with any accuracy. Generality of the sort needed for that
task seems inherently to require a differential predictor scheme with the
experimental inputs providing information about the transport mechanisms
within the boundary layer. Such is the approac. taken by most heat transfer
research today. The differential correlations needed to describe these ex-
perimental data are discussed in the next section and their success in pre-
diction of complex combinations is shown in the last section.

For the present, however, it can be said that some correlations can be
given which are useful for situations not too far removed from the eguilibrium
states represented by these data. In particular, situations involving slowly
varying blowing, or slowly varying K or 8 even for a relatively large
difference between the thermal and momentum boundary layer thicknesses.

Such correlations are shown in Figures 34 thru 36: Stanton number
versus enthalpy thickness, the effects of blowing, and the variation of
shape factor. In choosing the correlations conflicts had to be resolved
between the desire for accuracy and the desire for range. The correlations
shown are believed valid within #10% for the ranges of values covered.

Figure 34 shows Stanton number versus enthalpy thickness Reynoids number

for a number of different cases, all with no transpiration: flat plate,
moderate and strong accelerations, and moderate to strong decelerations.

A1l of the data shown are from the present series, and represent equilibrium
states. It is noteworthy that a single correlation covers the data for all
flat plate flows, all decelerating flows, and all accelerating flows less
severe than K = 1.47 x 10°%, The recommended curve is:
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St, = 0.015 Reh'o‘zs (AIR) (39)

150 < Reh < 6000

In recommending this particular form it must be admitted that certain
traditions have been honored. In particular, the use of the exponent

-0.25 tends to weight more heavily the data from the high Reynolds number
region, but this value has a long analytic history. The skin friction data
are not so conveniently described but the flat plate and the asymptotic
states of accelerated flows up to K =2.5x 10'6 are reasonably well
described in terms only of the momentum thickness Reynolds number by

¢ 0<K<2.5x10° SR
~% = 0.0128 Re "*%® (40) e
500 < Re_ < 5000 -

It should be borne in mind that for each asymptotic accelerated flow there
exists only one possible vaiue for Rem , dependent upon the value of K :
the asymptotic value, given earlier in Figure 22. When used to predict
these asymptotic values of cf/Z from the asymptotic vaiues of Rem s the
equation given above tends to underpredict by about 10%.

Blowing can be discussed either in terms of the effects at a particular
location (x-Reynolds number) or at a particular local state of the boundary
layer (enthalpy thickness Reynolds number). The local descriptor has more
generality since it can be applied in cases of non-uniform velocity. It
has been found, by comparison with the data presented here and in the
original source documents, that the effect of blowing (or suction) can be
calculated with reasonably good accuracy using a form derivable from a

Couette flow model, evaluated at constant boundary layer thickness Reynolds
number:

c 1.28 |
A A LI B)] 0+ )2 (1) |
fo e i
m i
or |
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This relationship is recommended within the following range of conditions.

U_ = constant flows (-0.01 F < 0.010)
Decelerating flows (-0.20 < m ; -0.004 < F < +0.004)
Accelerating asymptotic flows (K < 1.75 x 107%; 0 < F < +0.004)

The range of applicability of Eq. (41) can be recalled by the following nota-
tion, which suggests that three parameters are important:

S . oSt
-C St
f, 0

For accelerating flows with constant K an asymptotic condition may be
reached such that "size" is a unique function of K and B . For such
corditions the 1ist of variables is reduced to two, since "size" is fixed
once K and B are chosen. Hence the comparison can be made between
asymptotic states. For flat plate and decelerating flows, "size" is a
variable and the comparisons must be made at the same boundary layer thick-
ness Reynolds numbers. Confirmation of the validity of Eq. (41) is shown in
Figure 35 which includes friction and heat transfer data for accelerating,
decelerating, and flat plate cases, with blowing and with suction.

The shape factor has been found to correlate reasonably well for all
values of blowing and suction and for all variations of free stream velocity
if described in terms of (Bm + B), a parametric group occurring in one form
of the momentum integral equation. Figure 36 shows H versus (Bm + ) for
conditions covering accelerations and decelerations with uniform values of
blowing along the surface. With the exception of 4 data points at (Bm +
B) = -1.0 , the remainder of the data are well organized. The errant
points may well have been laminarized by the combined effects of suction and
acceleration.
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A MATHEMATICAL MODEL FOR SOLUTION OF THE MOMENTUM EQUATION

During the past decade enormous strides have been made in our ability
to solve the partial differential equations of the boundary layer, using
finite difference technigues and the power of the digital computer. To
-ali intents and purposes mathematically exact solutions to the boundary layer
equations can be obtained for virtually any kind of boundary conditions, pro-
vided that the turbulent transport processes are adequately modeled. The
speed with which such solutions can be obtained has made direct solution of
the boundary layer equations for particular applications a practical engine-
ering design tool.
' We are not going to be concerned here with the details of any of the
several finite difference procedures in common use today, but rather with a
scheme that has been used successfully to model the dominant turbulent shear
stresses in transpired turbulent boundary layers.

The time averaged momentum equation of the boundary layer, particularized
for the moment to constant fluid properties, and neglecting normal turbulent-
stresses, may be written as follows:

T, 3 [, W gl S
U ax v ay oy [V 3y uv ] * p dx

a
1
o

(43)

If the turbulent shear stress u'v' s known at all points in the
boundary layer, the momentum problem simply becomes one of solution of
Eq. (43) for any desired boundary conditions, including transpiration.

Although progress continues to be made in turbulent transport theory
in general, and turbulent boundary layer theory in particular, it is still
fair to say that there is as yet no truly fundamental theory that may be
used as a universal starting peint for solution of turbulence problems.
Turbulent boundary layer theory has gone through, and continues to go through,
a series of stages involving successivelv higher orders of sophistication.
Each level in this development has involved the correlation of experimental
data at a more fundamental level, and has opened up the possibility for
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solving successively broader ranges of problems with a single consistent

set of empirical constants. The information and calculating procedures to

be presented here do not represent any very bold steps toward a more general
theory, but they will allow computation of equilibrium and near equilibrium
boundary layers as precisely as any scheme so far devised. Higher order
models are presently being investigated by numerous researchers, and hope-
fully will Tead to theories that embrace still broader classes of applications,
although probably at the price of complexity and computation cost.

We will first introduce the concept of eddy diffusivity for momentum,
€n 0 35 @ convenient way of expressing the turbuient shear stress.

uy =

=

€ -g— (44)

~<

Already, we are in the realm of theoretical controversy, since implicit
in Eq. (44) is the notion that the turbulent shear stress goes to zero in
the absence of a gradient in the mean velocity profile.  In spite of its
short-comings, the eddy diffusivity concept has the virtue of allowing one
to use the same computation program for both laminar and turbulent boundary
layers. Since most real turbulent boundary layers grow out of laminar
boundary layers, the advantage is obvious.

It is convenient to visualize the turtulent boundary layer as con-

sisting of an inner wall-dominated region, and an outer region which actually

occupies most of the thickness of the boundary layer. However, for most ap-

plications the inner region is, by far, the most important one, and it is on:
this region that we will focus primary attention.

The inner region may be subdivided into a region immediately adjacent
to the wall in which viscous forces predominate (em approaches zero), and a
region farther out in which momentum transfer is almost entirely by turbu-
lent transport processes, but in which the scale and intensity of the
turbulence is still strongly dependent upon the proximity of the wall.

The Prandtl mixing - length theory, despite much criticism for many
years, still provides a simple and remarkably adequate basis for describing
the turbulent momentum transport process in the inner region, at least for
equilibrium and near equilibrium boundary layers. The mixing length, & ,

is defined such that it is related to the eddy diffusivity for momentum
and the mean velocity gradient by the following equation:
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- A3 (45)
Outside of the viscous-dominated region immediately adjacent to the
wall, the mixing-length in the inner part of the boundary layer is found
to be proportional to distance from the wall, with a proportionality
factor, k , that is independent of either transpiration rate or pressure
gradient. Figure (37) shows some measurements of the mixing-length for a
number of cases of transpiration, both blowing and suction, with no pres-
sure gradient and with an adverse pressure gradient. Results for favorable
pressure gradients are similar. MNote that all of the data in the region
near the wall converge on a single linear relation with k = 0.41 . We
will model the region outside the viscous near-wall region (which Tatter
we will now term the viscous sublayer), but inside of the outer, or "wake",
region, by: '

n

2 = ky (46)

where k= 0.4

The viscous sublayer immediately adjacent to the wall can be modelied
in a simple way by introducing a damping function that forces the mixing-
length £ to naught at the wall. Designating the damping function as D ,
the mixing-length over the entire inner region may then be expressed as:

L = kyD (47)

The damping function D can be satisfactorily expressed in a number
of different ways. A scheme which is very popular today, and which was
#irst suggested by Van Driest (1956), is an exponential function which
leads to mean velocity profiles that correspond quite well with those
observed experimentally.

1§

D = 1.0-exp (~y'/a") (48)

where y+ js the non-dimensional distance from the wall
surface, expressed in so-called "wall" coordinates, y+ = y\[§;¥;7577v .
and A' is the effective thickness of the viscous sublayer expressed
in the same way.
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The effective thickness of the viscous sublayer is probably the single
most important parameter in computation of turbulent boundary layers. The
sublayer, though comprising a very small fraction of the total boundary
layer thickness, is the region where the major change in velocity takes
place, and, except for very low Prandtl number fluids, is the region wherein
most of the resistance to heat transfer resides. If this region is modelled
accurately only a very approximate scheme is needed throughout the rest of
tre boundary layer. ‘ »

The thickness of the sublayer is evideat!y determined by viscous
stability considerations. The experimental evidence is that a favorable
..pressure gradient (dP/dx negative) results in increased thickness, while an
adverse pressure gradient has the opposite effect. Transpiration into the _
boundary layer (blowing) decreases the thickness, if it is expressed in non-
dimensional wall coordinatés, while suction has the opposite effect. Surface
- roughness, while not a subject of this paper, causes a thinning of the sub-
layer.

The effects of pressure gradient and transpiration on At are con-
veniently expressed in terms of a non-dimensional pressure gradient parameter,
p+ , and a non-dimensional blowing parameter, 'v; » both of which can be
either positive or negative. In both of these parameters the main argument
is normalized with respect to the same wall coordinate parameters as is the
effective sublayer thickness in N .

The functional dependence of At upon p+ and v; has been deduced
experimentally by examination of a very large number of velocity profiles
obtained as part of the Stanford project over a period of six years. Before
examining these results, however, it should be mentioned that considerable
Progress has been made in both qualitatively and quantitatively describing
this function using some relatively simple theoretical ideas and a minimum
of experimental data. A number of investigators (for example, Bradshaw
(1969)) have discussed the significance of a minimum value of a local
Reynolds number of turbulence as being a requisite for maintenance of a
turbulent boundary layer. Numerous investigators, going back to the early
theoretical work on the transpired turbulent boundary layer by Rubesin
(1954), have implicitly introduced this concept as a basis for defining the
thickness of the viscous sublayer. The local Reynolds number of turbulence
can be defined as:
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Ret = RtJ TT"/) = R.tdgctt/p/v_ (49)

Ry s the turbulence length scale, can be considered to be effectively
the same as the mixing - Tength 2 = ky . Thus,

Ret = ky{gc.rt/p/v ) (50)

It should also be noted that by combining Equations (44) and (45) with (49)
and (50),

Ret = em/v (51)

Furthermore, outside of the viscous sublayer Ty T, 50 Eq. (50) can also

 be expressed as,

e o +" - |
Re, = ky T/To , (82) |

An examination by Andersen (1972) of a large amount of experimental
data for transpired turbulent boundary layers for both favarable and adverse
pressure gradients indicates that Ret is approximately the same number
(about 33.0) in every case at a point outside of the sublayer defined as
approximately y+ = 2.5 N . Thus the thickness of the viscous sublayer,
and by implication a* , is evidently characterized by a critical value of
the Reynolds number of turbulence. It follows, incidently, that if Ret
falls everywhere below this value the turbulence in the boundary layer
will damp out and a laminar boundary layer will result, and this is pre-
cisely what is observed in strongly accelerated flows where the shear stress
decreases so rapidly with distance from the wall that Ret never reaches
33.0. The important point here, however, is that with these facts alone

it is possible to generate the functional dependence of At upon p+

and v; .

The following equation is an empirical representation of the experimental
data on A’ . but it could just as well be described as an empirical representa-
tion of Andersen's amalysis. In either case the algebraic form of the equa-

tion has no particular significance.
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At - 25.0

(53)

+
»av;*' ——P-—r +1.0
\E * o,

where a = 7.1 if v_ > 0.0, otherwise a = 9.0

"
[

b=4.25 if p’ < 0.0, otherwise b = 2,0

1

C

10.0 if p+;§ 0.0, otherwise ¢ = 0.0

Equation (53) is plotted on Figure 38 where the effects of pressure

~ gradient and transpiration can be clearly seen. Note that a strong

favorable pressure gradient forces A* to very high values,,and that blow-

ing lessens this effect, while suction increases it. If A" becomes very.

large the viscous sublayer simply overwhelms tic entire boundary layer, and
this is the "laminarization" discussed earlier. In fact most of the trends
noted earlier in connection with the experimental data on Stanton number are
recoverable by varying the value of At . The thickening of the sublayer
caused by a favorable pressure gradient (accelerating flows) results in a
decreased Stanton number simply because the major resistance to heat transfer
is in the viscous sublayer.

Note that an adverse pressure gradient causes & decrease in sublayer
thickness. Interestingly, where these results are used to compute velocity
profiles for adverse pressure gradients and no transpiration, and when the
velocity profiles are plotted on u+ , y+ coordinates, they tend to fall on
the same line as is obtained for no pressure gradient in the near-wall region,
but outside of the sublayer. This is the “law-of-the-wall" which has Yong
beer noted to be universal for no pressure gradient and adverse pressure
gradient flows. The conventional "law-of~-the-wall" does not apply for strong
favorable pressure gradients. The universality of the "law-of-the-wall" for
adverse pressure gradients results from compensating effects of the decreased
sublayer thickness and the positive pressure gradient.

&Y as represented by Eq. (53) and Figure 38 has been evaluated under

essentially equilibrium conditions, i.e., conditions under which v; and/or
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_'p+ are invariant or, at worst, are varying only slowly along the surface. —

This is a case of inner region equilibrium. It is probable that when a sud-
den change of exteriial conditions is imposed, the inner region comes to
equilibrium more rapidly than the outer region, although this has not been
proved. In any case, under non-equilibrium conditions where vz or p+

are changing rapidly, it nas been observed that the sublayer does not change
instantaneously to its new equilibrium thickness, i.e., A+ does not im-
mediately assume its new equilibrium value. It can be hoped that some of
the higher order models of turbulence will predict this effect, but in the
meantime, a reasonably satisfactory expedient is to use a rate equation of

a type suggested by Launder (1968): '

dA+ . )
eff _ + + ‘ :
dx+ - (Aeff = Aeq)/C | (54)

Asz is the locally effective value of At , while A;q is the eqdi]ibrium
value obtained from Eq. (53). A value of C of about 4000 has been found to
be reasonable. '
A1l of the discussion up to now has been concerned with the inner region
of the boundarv layer. The outer region, comprising the greater part of the
boundary layer thickness, is of considerably less importance in predicting
performance, and thus can be handled successfully using more gross approxi-
mations. This statement may not be valid for strongly non-equilibrium
boundary layers, especially under adverse pressure gradient conditions. Its
validity for accelerating flows with and without transpiration will be demon-
strated later. In any case, for equilibrium or near equilibrium boundary
layers, either the assumption of a constant value of eddy diffusivity over
the entire outer region, or the assumption of a constant value of mixing-
length over the entire outer region yields approximately the same result.
If a constant eddy diffusivity is used, an empirical correlation of eddy
diffusivity as a function of either displacement or momentum thickness
Reynolds number can be obtained. However, if mixing-length is used in the
inner regions, it is computationally simpler to use the mixing-length con-
cept for the entire boundary layer.
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Figure 37 shows measured mixing-length data for the suter region fer
a number of cases of transpiration with zero and adverse pressure gradients.
The adequacy of an assumption that the mixing-length is csnstant in the outer
region may be judged from these data. A further simplification is also i}-
lustrated in this figure. The outer regica mixing-length ccales approximately
on the total boundary layer thicknéss. A éatisfactcry computation scheme is
to express the cuter region mixing-length as a2 fixed fraction, A , of the
99 percent boundary layer thickness.

L = xs'gg . {55)

_.13A Qa!ue of A = 0,084 works reasonabiy well over the entive range of experi--
. menial data discussed in this paper, including favorable and adverse pressure

gradients, blowing and suction. One then simply evaluates & from Eq. {47)

~ until tie valug obtained eguals that given by Eq. (55), and then uses the

?atter value for the remainder of the boundary layer.
There is som2 evidence that the effective value of X 1is larger than -
0.084 for boundary layers in which the momentum thickness Reynoids numbers

-is less than 5500. This may be a result of the fact that at low Reynelds

numbers the sublayer is a. larger fraction of the boundary layer and the
approximation of a constant mixing-length over the remainder of the boundary
layer is less valid. For strong blowing, even at low Reynclds numbers, A
again appears to be close to00.084, and this is consistent with the above
eiplanation because the sublayer is then thinner. The following equation
has been found to describe the observed low Reynolds behavior of A gquite
well:

A o= 0.250 Rem""'a (1. - 67.5 F) (56)

IF A< 0.088; i =0.08

A Mathematical Model for Solution of the Energy Equation

The time-averaged energy equation cf the boundary layer, pa(ticularized'
to constant fluid properties and negligible viscous dissipation, and neglecting
turbulent corduction in the stream-wise direction, may be written as:
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EL+VL-L[QLWWﬂ = 0 - (8]

This equation can be solved for any desired baundafy'condi;ions pro-
viding the velocity field has been established first by solution cf the
momentum equation, and provided that.we have infgrmation‘on‘the turbulent

- heat transfer rate, t'v' .

Analogous to the methed of solution of the momentum equation, we will
introduce the concep’ of eddy diffusivity for heat, e, .

I = n% | (58)

Although it might be fruitful to attempt to evaluate either T'V'
or ¢, on the basis of assumptions that are independent of the turbuient
shear stress, it seems plausible that there is some kind of relationship
between t'v' and uv' , or € and €q - Therefore most analysts have
found it convenient to introduce the concept of a turbulent Prandtl number,
Prt » defined as fcllows: |

€
_ G
Prt = E;; {59)

Introducing Eq. (58) and (59) into Eq. (57) we obtain:

U%+V-§—t é—[(01+e/i’l")-§1:-.l= 0 (60)\_

<
Qz
<

If Prt >were known, Eq. (60) could be solved for any desired boundary
conditions su iong as the momentum equation had been previously solved.
Evaluation of the turbulent Prandtl number can thus solve one of the central
probiems of turbuient heat transfer.

A very simple physical model of the turbulent mementum and energy

transfer processes leads to the conclusion that € = € o i.e., Prt = 1,00

(the "Reynolds Analogy"). Slightly more sophisticated models suggest that

Prt > 1.00 when the molecular Prandtl number, Pr , is less than unity.

Still other models suggest that Prt equals 0.7 or 0.5 in turbuient wakes.
The experimental data a' e not abundant, but Figures 39, 40, 41, and 42

show the measurements, respectively of Simpson, Whitten and Moffat (1970),
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Kearney (1970), and Blackwell (1972) with air as a working substance. These
were all evaluated from measurements - f the slopes of mean velocity and
temperature profiles, together with estimates of shear stress and heat flux
profiles, and the experimental uncertainty is high, especially near the wall
(y+ < 20) and near the outer edge of the boundary layer. The data on Figure
39 are all for constant free-stream velocity, but cover a wide range of
blowing and suction conditions. The data on Figure 40 are for accelerated
flows with a considerable range of blowing. Figure 41 shows three separate
test runs with no transpiration, but first with no pressure gradient, and

then two successively stronger cases of equilibrium adverse pressure gradients.
Finally Figure 42 shows three test runs for an adverse pressure gradient with

three cases of successively stronger blowing,

Despite the very considerable scatter of data, a few conclusions seem..
definitely warranted. First, the turbulent Prandtl number, at least for
air, apparently has an order of magnitude of unity. Thus the Reynolds
Analogy (Prt = 1.0) 1s not a bad approximation.,

The second .conclusion is that Prt seems to go to a value higher than
unity very near the wall, but is evidently iess than unity in the wake or
outer region} The situation very close to the wall is especially vexing
because it is extremely difficult to make accurate measurements in this
region, and yet it seems evident that something interesting and important
is happening in the range of y+ from 10.0 to 15.0 . The behavior of Prt
at values of y+ less than about 10.0, is highly uncertain but fortunately
not very important because molecular conduction is the predominant transfer
mechanism in this region. At the other extreme, in the wake region Prt
does not need to be known precisely because the heat flux tends to be s7.a1l1 -
there.

Another conclusion, for which the evidence is not yet very strong,
is that there is some small effect of pressure gradient on Prt . Figure
41 suggests that an adverse pressure gradient tends to decrease Prt . Al-
though the scatter of his data was very large, Kearney (1970) reported that
there seemed a tendency for Prt to be increased by a favorable pressure
gradient (an accelerating flow).

The results on Figure 39 suggest that transpiration does not influence
Prt unless there is an effect very close to the wall that is hidden in the

48

i : ik B oD o .- et e mliiad
e gt S o g o A e i g 2 R T, s . . e "

‘)

Al

>
. . - , s, )
et : /9 foo vl o
R B i AN I i YL o1, et P okt o e o e b =T T e

A e o A




_experimental uncertainty in this region. This conclusion is also implied
by the results on Figure 42,

Many anclysts have been content to assume that turbulent Prandtl number
is a constant throughout the boundary layer, and indeed the assumption that
Prt = 0.9 , for air, will generally yield satisfactory predictions of overall
heat transfer rates. However, it is found that the assumption of a constant
Prt will yield temperature profiles that do not correspond well with experi-:

ment except in the regions very close to the wall, and near the outer edge

of the boundary layer. Temperature profiles can be much more accurately pre-
dicted if some. attempt is made to introduce a variation of Prt with y+
that at least approximates the variation seen in the experimental data. Both - .
of the following equations, neither of which have any theoretical basis, have S

been used:with'reasonable success by the authors for_calculations for air:

SV, T OIS I

) + /4
Pry, = 1.43-0.17y (61)

IF Prt < 0.86 ; Prt = 0.86

Pr, = 0.90 + 0.35[1 + cos(ny'/37)1s y' < 37 (62)

0.90 ; y" > 37

[

0.60 3 y > (A ¢ ag/K)

i AR

A pressure gradient effect has not been included in these empirical

equations because of insufficient information but, in the section to follow,
one effect of this omission will be illustrated.

P 1 o
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SCME EXAMPLES OF BOUNDARY LAYER PREDICTIONS

The quality of boundary layer predictions that can be made using the
mixing-length model and associated empirical functions will now be demon-

" strated. Four examples have been chosen for illustration. The first is

the case of the simple impermeable wall with no pressure gradient, and this

is of course both an equilibrium momentum boundary layer and an equilibrium
thermal boundary layer. The second is an adverse pressure gradient equilibrium_
boundary layer. The third is an adverse pressure gradient boundary layer with
strong biowing which is not precisely an equilibrium boundary layer, but shows
near-equilibrium characteristics. The final example is a strongly accelerated
boundary layer with strong blowing, but in which both blowing and acceleration
are abruptly stopped at different points along the surface to yie'd non-
equilibrium conditions. :

A modification of the Spalding/Patankar (1967) finite difference program
was used for all predictions, although any good finite difference procedure
siwould yield similar results.

Figure 43 shows cf/2 as a function of momentum thickness Reynolds num-
ber for the simple impermeatle wall with no pressure gradient. Shown for
comparison is the recormendation of Coles {1962), which is based on an exten-
sive examination of the available data, and also two sets of data from the
Stanford project, the earlier resuits of Simpson, and the more recent results
of Andersen. The predicted friction coefficients coincide closely with Coles',
and indeed the auxilliary functions were chosen to force this coincidence.

The corresponding heat transfer results are shown on Figure 44 where

"~ comparison is made with two sets of data from the Stanford project, the re-

sults of Whitten {1967) and of Blackwell {1972). The Blackwell data at
Reh below 2000 are a little lower than would be expected for a corresponding
equilibrium thermal boundary layer, because the thermal boundary layer
started out at the beginning of the test section much thinner than the mo-
mentum boundary layer.

It should also be added that all of these results were obtained using
low velocity air with temperature difference from 25 to 35 degrees F .
Although the influence of the temperature dependent fluid properties has not
really been systematically investigated, and indeed small temperature dif-
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ferences were deliberately used to avoid this problem, calculations with

the computer pregram using real properties suggest that the temperature-
difference effect is to reduce Stanton number by about 1 or 2 percent. This
effect has not been considered in any of these results; the predictions have
been made using constant properties, and the experimental data have not been
corrected for any variable properties effect.

Note that if the friction ces=fficient prediction on Figure 43 1s ac-
ceptable, the heat transfer prediction on Figure 44 is entirely dependent
upon the turbulent Prandtl number function employed, because everything else
in the model is identical, and in fact both predictions were made simultaneously.

In the upper part of Figure 45 both friction and heat transfer results

are shown for an adverse pressure gradient test run with no transpiration. ;
For this case U_ was varied by, » | | .

U = U] X (63)

where m = =0,15 . Both the Clauser shape factor, G , and R were found to
be essentially constant for the experimental data over most of the test section,
so this is believed to be an equilibrium momentum boundary layer.

The prediction program also produced essentially constant values of G
and B . The friction prediction is excellent, but the heat transfer pre-
diction is about 5% low. Experimental uncertainty may account for this dif-
ference, but it is also quite possible that we see here evidence of a pres-
sure gradient influence on turbulent Prandtl number. A 10 percent decrease
of Pr-t throughout the boundary layer would make the difference,

In the lower part of Figure 45 are the results for an adverse pressure
gradient test with rather strong blowing. Because F was held constant
(.004) this is not an equilibrium boundary layer, either momentum or thermal.
For an equilibrium boundary layer it would be necessary for Vo ! and thus
F , to decrease with x . However, the departure from equilibrium is not
great and the predictions for both cf/2 and St are seen to be quite
good.

The scheme described not only predicts cf/2 and St quite adequately,
but does equally well for velocity and temperature profiles. Figure 46 shows
a pair of profiles for the adverse pressure gradient, strong blowing case dis-
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cussed above. These are presented in dimensional coordinates so that normai-
fzation will not tend to mask anything, and are presented for a point 70 '
inches downsiream so that a small percentage drift of the predictions would
show as a large effect. The results shown on this figure would be hard to
improve upon.

The final {illustration, Figure 47, shows an example of prediction of
a very difficult case. 'In this run the flow starts at constant free-stream

-velocity but with relatively strong blowing, F = 0.004 . This flow is then

subjected to a very strong acceleration starting at X = 2 ft. In approxi-
mately the middle of the accelerated region the blowing is remcved entirely.
Then at about X = 3.4 ft. the acceleration is reroved, and for the re-
mainder of the test section there is no biowing and no change in free-stream
velocity.

An important thing to note-here is that the model responds remarkably
to the abrupt changes in boundary conditions, and predicts the resulting
non-equilibrium boundary layer very well indeed. Of particular significance
is the abrupt rise in Stanton number following the removal of blowing. The
ability of the prediction to follow the data at this point is heavily de-
pendent upon the use of the rata equation and lag constant, Eq. (54). This
shows very graphically the importance of the sublayer and the fact that the
sublayer does not instantaneously assume its new equilibrium thickness after
an abrupt change of boundary conditions. There may well be significant non-
equilibrium effects in the outer part of the boundary layer, but these have
a relatively minor influence on overall heat transfer rate.
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The physical situation.

Fig. (1)
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Fig. (2) Defect profiles for an equilibrium boundary layer.
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Fig. (3) The Clauser suape factor, G , versus B, + 8 .
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Fig. (42) The variation of turbulent Prandtl number
within the boundary layer for accelerating

flows with transpiration.
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Fig. (47) A comparison of measured and predicted
Stanton numbers for a step decrease in
blowing within a strong acceleration.
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